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Abstract

Polycystic ovary syndrome (PCOS), a relevant cause of infertility, is a heterogeneous, endocrine
disorder affecting up to 10–15% of women in reproductive age. Besides hyperandrogenism,
insulin resistance (IR) plays a key role in such syndrome. Insulin-sensitizing drugs, such as
Metformin, are effective in treating hyper-insulinemic PCOS patients. Recently, inositols – myo-
inositol (MI) and D-chiro-inositol (DCI) – have shown to be an efficient and safe alternative in
PCOS management, as both inositol isoforms are able to counteract downstream consequences
of insulin resistance. Yet, whereas DCI contributes in mediating insulin activity mainly on non-
ovarian tissues, MI displays specific effects on ovary, chiefly by modulating glucose metabolism
and FSH-signaling. Moreover, MI may also improve ovarian functions by modulating steroid
metabolism through non-insulin-dependent pathways. As DCI and MI activity likely involves
different biological mechanisms, both inositol isoforms can be synergistically integrated
according to a multitargeted design, by combining MI and DCI in a ratio corresponding to their
physiological plasma relative amount (40:1). New experimental and clinical evidence with MI
plus DCI evidenced the suitability of such integrated approach, and provided promising results.
Further studies need to investigate thoroughly the molecular mechanism and confirm such
preliminary data.
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Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine
disorder, affecting up to 10–15% of women of reproductive age in
western countries where it represents one of the leading causes of
infertility [1]. The simultaneous presence of polycystic ovary and
anovulation was first recognized as a distinct syndrome, by Irving
F. Stein, Sr., and Michael L. Leventhal [1], in 1935. Diagnostic
assessment of PCOS includes a constellation of symptoms such as
amenorrhea, obesity, hirsutism and multiple follicular cysts [1].
These criteria were quite limiting, as other pathological features
were excluded. PCOS is currently deemed a heterogeneous
disorder caused by the combined cross-talk among environmental
factors and predisposed multifactorial genetic background [1,2].
In addition, PCOS shows various reproductive, metabolic and
cardiovascular anomalies, with long-term health concerns during
the life span [3,4].

Throughout the recent years, studies on inositols and its
phosphate derivatives (myo-inositol-1-phosphate, myo-inositol-
biphosphate, inositol pentakiphosphate to mention just a few)
have gained momentum [5].

Cell signaling via inositol and inositol phosphates, in particu-
lar via the second messenger myo-inositol 1,4,5-trisphosphate,

and phosphoinositides comprises a great amount of biological
activities. Despite the fact that inositol has been deemed for a
while to be an ‘‘inactive’’ molecule [6], current evidence suggests
that, by itself, inositol plays significant biological roles. Indeed,
some inositols isomers have been proved to be medically relevant:
scyllo-inositol (neurodegenerative diseases), D-chiro-inositol
(DCI) (diabetes) and, by no doubt, myo-inositol (MI) (cancer,
metabolic syndrome, PCOS). It is therefore timely to consider
exploration of the roles and applications of these ‘‘new’’ simple
molecules as pharmacological, pleiotropic agents.

PCOS pathogenesis

The up-to-date definition of PCOS (Rotterdam criteria 2004)
requires at least two of the following clinical and endocrine
features: chronic ovulatory disorder, hyperandrogenism and
polycystic ovaries. Four different ‘‘discrete’’ phenotypes, or
subsets, can be identified in PCOS subjects, on the basis of the
following clinical and endocrine anomalies: (1) chronic ovulatory
disorder, hyperandrogenism and polycystic ovaries; (2) chronic
ovulatory disorder and hyperandrogenism; (3) hyperandrogenism
and polycystic ovaries; (4) chronic ovulatory disorder and
polycystic ovaries, without hyperandrogenism (Table 1).

There is a wide agreement on the final outcome to which the
syndrome unavoidably leads. The follicular maturation arrest,
resulting in the accumulation of numerous, small subcortical
follicle ‘‘cysts’’ and increased ovarian stromal volume, represents
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the chief hallmark of PCOS. The impairment of ovary function
leads to abnormal menstrual cycles, infertility, eventually
worsening clinical hyperandrogenism. Therefore, the question is
how many biochemical paths could actually account for the
emergence of such disease.

Hyperandrogenism. The pathophysiology of PCOS has been
ascribed mainly to primary endocrinological abnormalities,
including deregulation of the hypothalamic–pituitary axis and
ovarian steroidogenesis. Yet, none of these mechanisms alone can
explain the manifold phenotypes of PCOS, and it is currently
deemed that endocrinological cues may differentially interact
each other and with other factors in shaping a specific phenotype.
However, two primary pathophysiological conditions deserve
special attention as PCOS may be experimentally induced by
disrupting the activity of the suprachiasmatic–hypothalamic–
pituitary axis or by impairing androgen steroidogenesis. Indeed,
ovary cysts, like those observed during PCOS, may be induced by
exposing mature female rats to an environment with constant light
[7]. Disruption of the normal light–dark cycle may lead to a
severe impairment in the circadian-regulated release of melatonin
and it is followed by several changes in endocrine and biochem-
ical pattern [8]. Even if still poorly understood, it can be
hypothesized that altered melatonin levels may significantly
hinder the LH/FSH balance and the gonadal release of androgens,
thus triggering the onset of PCOS [9]. Moreover, melatonin is
currently acknowledged in exerting a very relevant role in
modulating ovary functions and oocyte maturation [10]. On the
other hand, PCOS may be experimentally produced by androgenic
treatments and neonatal androgenization [11]. Excessive androgen
availability can affect hypothalamic endocrine balance, leading
thus to an inappropriate LH/FSH stimulation, mostly if the
androgen stimulation occurs early during prenatal or post-puberty
periods, when organogenesis take place [12]. Furthermore,
hyperandrogenism resulting from genetic defects affecting adrenal
androgen production, and androgen-producing tumors are asso-
ciated with the development of polycystic ovaries [13]. Imbalance
in LH/FSH and adrenal hormones homeostasis are usually
followed by secondary changes in ovarian steroidogenesis.
Eventually, hyperandrogenia may result from an intrinsic alter-
ation in the steroidogenic activity of PCOS theca cells that
encompass multiple steps in the biosynthetic pathway [14].

The excessive ovarian androgen production would result in
many reproductive abnormalities, including amenorrhea or
oligomenorrhea, early follicular atresia, anovulation and infertil-
ity, along with all the other typical clinical manifestations of
hyperandrogenism, including hirsutism and acne. Therefore, it is
not surprising that a few endocrine manipulations, aimed at
suppressing abnormal LH release by GnRH super-agonists, have
provided some useful clinical results, given that LH surge has a
permissive role in increasing androgen production from ovarian
theca cells [15]. In turn, the fact that the inhibition of androgen

production, even if transient, may enable follicle maturation and
subsequent ovulation, strongly argues for a pivotal role played by
hyperandrogenism in PCOS pathogenesis. Hormone imbalance in
PCOS may also affect post-translational regulation of signaling
molecules. Namely, FSH modification through sialic acid linkage
has been described in a wide percentage of PCOS patients [16].
As a consequence of sialylation, FSH half-life increases due to
reduced hepatic catabolism: sialylation impedes the FSH binding
to asialo-glycoprotein receptors, thus preventing the first degrad-
ation step. Indeed, a predominance of highly sialylated FSH
isoform has been recently described in PCOS [17]. However, if
FSH-sialylation alone could account for the observed reduced
FSH-activity is a debatable question. Indeed, paradoxically results
have been provided by older studies [18] highlighting that less
sialylated FSH variants can still display higher receptor-binding
activity and biological potency [19]. Furthermore, less sialylated
isoforms of FSH appear more potent than the more sialylated in
the stimulation of granulosa cells proliferation and in preventing
follicular atresia [20]. Irrespective of the FSH sialylation degree,
modulation of FSH activity seems mainly be exerted by other
endocrine influences, as suggested by recent investigations.
Namely, FSH pleomorphism in the ovary seems to be tightly
linked not only to sialic acid availability but also to IR [21]. In
turn, FSH isoforms seem to selectively modulate TGFb activity
on oocyte maturation [22].

Insulin resistance (IR). Although the Rotterdam consensus
meeting explicitly excluded IR from the diagnostic criteria,
deregulation of insulin sensitivity and/or abnormalities in glucose
metabolism, are usually detected in several PCOS women,
associated or not with obesity [23]. It is currently acknowledged
that IR in PCOS is primarily due to defects in post-binding
signaling, affecting mainly the metabolic pathway [24]. The key
role of IR and/or compensatory hyperinsulinemia in the origin-
ation and development of PCOS has gained growing cogent
evidence [25]. Even if some discrepancies have been recorded in
frequencies of both IR and diabetes mellitus type II among PCOS
patients [26], it is currently deemed that up to 80% of PCOS
women, with upper-body obesity (increased waist circumference
and waist–hip ratio) shows IR, whereas 30–40% of PCOS lean
women suffer from hyperinsulinemia [27]. In PCOS patients, IR
seems to be independent from BMI, and physicians are advised to
treat PCOS patients by keeping in mind that IR must be
counteracted, regardless patient’s weight status [28]. Insulin
prompts directly the ovary theca cells to enhance the synthesis
and release of androgens. Insulin may also indirectly enhance
androgen synthesis through modulation of carbohydrate levels.
Indeed, high glucose concentrations, inhibit the hepatic synthesis
of sex hormone-binding globulin (SHBG), therefore causing a
consequent increase of biologically circulating free-active andro-
gens [29,30]. Furthermore, IR in PCOS women increases the risk
for glucose intolerance, type 2 diabetes and lipid abnormalities

Table 1. Clinical index, metabolic and endocrine mean values in PCOS subtypes (from Głuszak et al. [92]).

Phenotypical groups

Parameters 1 OD + HA + PO 2 OD + HA 3 HA + PO 4 OD + PO

Insulin after 30 min of OGTT 47.59 ± 24.20 97.43 ± 57.08 64.88 ± 28.19 84.00 ± 19.80
Weight (kg) 71.6 ± 19.3 82.1 ± 22.3 75.2 ± 19.9 80.8 ± 17.7
Trigliceryde (mg/dL) 96.64 ± 56.78 107.13 ± 65.56 80.33 ± 36.73 92.00 ± 62.23
HOMA-IR index 1.77 ± 1.49 2.04 ± 0.93 1.78 ± 0.80 1.73 ± 1.40
HOMA-index 110.89 ± 55.23 167.14 ± 80.71 128.78 ± 34.25 167.01 ± 65.61
Androstenedione (ng/dL) 485.28 ± 146.60 525.17 ± 146.08 395.25 ± 67.7 192.00 ± 103.2
17-ketosteroids (mg/dL) 16.45 ± 4.94 17.28 ± 3.56 20.78 ± 4.2 18.85 ± 8.3
17-hydroxy-corticosteroids (mg/dL) 5.23 ± 1.71 7.04 ± 1.59 5.54 ± 1.6 7.40 ± 1.3
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[31] (the main factors involved in PCOS pathogenesis are
depicted in Figure 1). In turn, the evidence that insulin-sensitizing
drugs (ISDs), such as Metformin and Thiazolidinediones
(troglitazone, rosiglitazone and pioglitazone) are effective in
treating PCOS patients, by lowering their hyperinsulinemia, is an
additional proof underpinning the relevance of IR in PCOS
[25,32,33].

Current treatments

Given the heterogeneity of clinical presentations, planning of
PCOS therapy is usually driven by ‘‘pragmatic’’ issues, and
mostly depends on the prevailing phenotypic features and
reproductive desires. Therefore, tailored strategies include
sequential or combined use of both pharmacological drugs and
nonpharmacological supports, including weight loss and dietary
habits modifications, since life style changes have been proven to
significantly improve ovary function and prevent later PCOS-
related risks [34].

Hormonal manipulations includes principally the use of oral
contraceptives or Metformin, even if a combination of therapeutic
options is often required to address specific clinical situations.
This subject has recently been reviewed in-depth elsewhere [35].

Combined oral contraceptives (estro–progestin compounds)
are used widespread as first-line treatment in PCOS women
presenting with moderate or severe hirsutism and/or menstrual
abnormalities. Their efficacies rely mostly on progestins and
estrogens suppressing the activity on LH release, which in turn

leads to decrease in ovarian androgen production. Moreover,
estrogens increase the hepatic synthesis of SHBG (thus lowering
the levels of circulating free androgens), and promote the
peripheral block of androgen receptors [36].

Even if few randomized controlled trials have been so far
performed, the available evidences show that both low and high-
dose contraceptives are effective in improving hyperandrogenism
in 60–100% of patients [37]. However, contraceptives are not an
acceptable option if the patient’s desire is to restore ovulation for
becoming pregnant.

For long time, Metformin has been the first choice in PCOS
management for women for whom restoring the ovulatory cycle
constitutes the main concern. Metformin exerts several insulin-
sensitizing actions by acting on different target tissue, including
the ovary, where it facilitates the translocation of glucose
transporters from intracellular sites to plasma membrane.
Metformin reduces glycemia levels leading consequently to
decreased ovarian androgen production, and reduced circulating
androgen levels [38]. Indeed Metformin has shown to counteract
hyperandrogenism in the short-term [39], but unfortunately no
long-term follow-up are available [40]. These effects are mostly
evident in obese, insulin-resistant PCOS women, whereas
controversial results have been published about Metformin
efficacy in non-obese non-insulin-resistant patients [41,42].
Overall, antiandrogenic efficacy of ISDs, including Metformin
and Thiazolidinediones, is far lesser than that obtained with
contraceptives or hormonal antiandrogens, as stressed by a recent
meta-analysis [43]. Furthermore, frequent adverse events are

Figure 1. Schematic diagram showing the main factors involved in PCOS pathogenesis. Inhibitory actions triggered by MI and/or DCI are in italic.
Inositols counteract hyperinsulinemia effects on glucose metabolism as well as on steroidogenic balance. Additionally, inositol-phosphate participates
in modulating LH release. In physiological conditions, MI/DCI ratio in follicular fluid averages 100:1, meanwhile the same ratio in the plasma is 40:1.
MI displays several actions within ovary cells: modulates glucose uptake, improving insulin signaling; enhances IP3-dependent calcium release;
stabilizes F-actin cytoskeleton (CSK) and probably, through that pathway, MI interfere with ovarian adrenal synthesis; participates in enhancing FSH-
mediated effects. DCI: D-chiro-inositol; MI: Myo-Inositol; IP: inositol-phosphate.

DOI: 10.1080/09513590.2016.1247797 MI/DCI (40:1) ratio 3



associated with Metformin assumption, including gastrointestinal
symptoms (diarrhea, nausea, vomiting and abdominal bloating)
and metabolic complications, and with Thiazolidinediones, such
as fluid retention, body weight increase, coronary artery disease,
myocardial infarction and bladder cancer. All the above cited side
effects may reduce the patients’ compliance and limit the use of
these drugs. A noteworthy hypothesis is that Metformin-based
benefits in PCOS patients are likely to be ascribed to a secondary
increase in inositol phosphoglycans availability triggered by
Metformin administration [44]. A reliable alternative to conven-
tional medicaments can be obtained by using inositol isomers, MI
and/or DCI in PCOS patients.

Inositols

Inositol is a hexahydroxycyclohexane, a 6-carbon ring compound
with a hydroxyl group attached to each carbon of the ring. There
are nine possible stereoisomeric forms of inositol, related to the
epimerization of the six hydroxyl groups. Among these isomeric
forms, MI, the mostly represented isoform, stands out for its
important biological roles [1], whereas different, integrative
functions are displayed by DCI, a stereoisomer produced through
the epimerization of the C1 hydroxyl group of MI [1]. In
particular, whereas the activation of glucose transporters and
glucose utilization take place under the regulation of MI,
glycogen synthesis is mainly controlled through DCI [45]. On
the other hand, in the ovary, MI regulates glucose uptake and FSH
signaling, while DCI modulates insulin-induced androgen syn-
thesis [46]. A significant variability has been noticed in the ratio
between MI and DCI in fat, muscle and liver, and this difference
reflects the distinct functions that the two isomers are likely to
play in those tissues. Moreover, the respective proportions of MI
versus DCI are actively maintained as MI is enzymatically
transformed into DCI through an NAD–NADH-dependent
epimerase, depending on tissue requirement.

When insulin binds to its receptor, two distinct inositol-
phosphoglycans (IPG), incorporating either MI or DCI (DCI-IPG
and MI-IPG), are released by the hydrolysis of glycosyl-
phosphatidylinositol lipids located on the outer leaflet of the
cell membrane. IPGs affect intracellular metabolic processes,
namely by activating key enzymes controlling the oxidative and
non-oxidative metabolism of glucose [47]. The inositol glycans
are small oligosaccharides released from insulin sensitive cells
upon stimulation by insulin. Isolated IPGs are capable of
activating insulin-sensitive cells. Despite some differences have
been noticed, both DCI and MI incorporated in IPGs significantly
reduce IR and promote an appropriate glucose metabolism [48].

However, while DCI-effects are restricted to insulin signaling
transduction, MI has demonstrated to exert other noticeable
activities in ensuring oocyte quality and maturation. Given that
MI-phosphate is required in GnRH agonist-mediated LH inhib-
ition [49], it can be hypothesized that increased availability of MI-
phosphate may be involved in LH modulation. Furthermore, IP3
collaborates in regulating intracellular Ca2+ release from mito-
chondria. In oocytes, this mechanism involves a specific receptor
subtype (IP3-R1) [50], deemed to play a pivotal role in oocyte
maturation, namely during the final stages of oogenesis, when
oocyte sensitivity to calcium fluctuations reaches the maximal
value. Indeed, oocyte maturation in rat is triggered by calcium
release after IP3 injection [51]. Moreover, oocyte culture
supplementation with MI promotes meiotic progression into
fertilization-competent eggs, whereas depletion of MI intracellu-
lar stores desensitizes inositol-related pathways, reducing IP3 and
calcium release [52]. Similarly, an in vitro study has evidenced
that MI improves also embryo quality and performances [53]
(Figure 1).

Inositol and insulin resistance

Women affected by PCOS and IR showed reduced serum levels
of DCI and increased urinary loss of DCI-IPG [54]. Indeed,
inositols (both MI and DCI) have been shown to participate in
the insulin-signaling pathway, given that MI and DCI are
constitutive components of inositolglycan, a poor characterized
modulator of insulin function. It stimulates pyruvate dehydro-
genase phosphatase and allosterically activates protein phos-
phatase 2C [55]. Additionally, anti-inositolglycan antibodies
block the in vitro effects of purified insulin mediators as well as
the insulin-induced stimulation of pyruvate dehydrogenase in
intact BC3H1 myocytes [56].

Once DCI-IPG was ascertained to be a key component of the
insulin transduction mechanism in the cells, it was possible to
establish a clear mechanistic link between IR and inositol
deficiency in PCOS patients [57]. That finding prompted to
verify the clinical efficacy of DCI in PCOS therapy. Indeed,

earliest studies showed that PCOS women treated with DCI
experienced lower free and total cholesterol levels, lower blood
pressure, increased insulin sensitivity, decreased serum andro-
gens, and ensure a higher frequency of ovulation, in both lean [58]
and obese patients [59]. Furthermore, DCI seems to improve
BMI, waist–hip ratio, and both systolic and diastolic blood
pressure, hence counteracting the main features of the metabolic
syndrome [60]. However, whereas DCI administration improves
the systemic consequences of IR, namely by modulating insulin
activity in non-ovarian tissues, DCI exerts controversial effects on
oocyte function. This paradoxical behavior received a sound
confirmation by further studies in which higher DCI doses were
administered to PCOS patients [61]. Indeed, encouraging results
obtained during the first pilot DCI-based trial [59] prompted
Nestler and his team to establish if more beneficial effects could
be obtained with even increased doses of DCI. Yet, by treating

PCOS women with 2.4 g DCI daily, Nestler was unable to confirm
the previous outcomes [46]. As a result, DCI was discontinued
from development by the company that conducted Phase I and
Phase II studies in both women with PCOS and women with
diabetes [46]. Those findings seem to be confirmed by an
investigation performed on PCOS patients treated with increasing
DCI doses (from 300 to 2400 mg/day), thus indicating that high
DCI dosage paradoxically worsens oocyte quality and ovarian
response in non-obese and non-insulin resistant PCOS women
[62]. Those disappointing data are in some way mirrored by
results obtained by treating PCOS patients with Metformin: the
antidiabetic drug decreases the follicles number and worsens their
quality [63], though Metformin significantly increases the insulin-
stimulated release of DCI-phosphoglycans and improves some
systemic features of PCOS [44]. It seems as though DCI may exert
some beneficial effects at systemic level by properly modulating
insulin-based activity, meanwhile hampering ovarian function.

Indeed, high release of DCI-phosphoglycans, under insulin
stimulation, enhances de novo testosterone biosynthesis from
ovarian theca cells, thus raising serum androgen levels [64]. In
addition, DCI may impair the subtle equilibrium in between MI
and DCI within ovary cells. Both DCI and MI are required to
ensure a proper glucose metabolism in cooperating with insulin.
Yet, MI seems to play a more critical role in oocyte, as suggested
by the fact that almost 99% of intracellular inositol pool is
constituted by MI [65]. DCI, instead, is produced from MI
through an NAD-dependent epimerase whenever it is required.
The epimerase conversion of MI to DCI is under insulin control:
in type 2 diabetes patients the reduced tissue insulin sensitivity
leads to decreased epimerase activity and hence downregulates
DCI synthesis [66]. However, ovary retains normal insulin sensi-
tivity even when other tissues display IR [67]. Thus, increased
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insulin levels as those recorded in insulin-resistant patients, are
likely to paradoxically foster the activity of ovary epimerase,
raising in that way the DCI intracellular production and
decreasing MI levels. Thereby, in hyperinsulinemic PCOS
patients DCI levels are unexpectedly increased in the ovary, and
further DCI administration cannot lead to any significant benefit.
Moreover, MI depletion will in turn negatively affect the oocyte
quality. Such paradox may help in explaining why DCI alone
cannot be considered a reliable approach to PCOS management
and shed light into the so-called ‘‘DCI paradox in the ovary’’
[68]. Indeed, a significant increase in the epimerase activity in the
theca cells obtained from ovary of PCOS women has been found
to be associated with a dramatic reduction in the MI/DCI ratio
[69]. That finding has been indirectly confirmed by the significant

decrease in the MI/DCI ratio recorded in follicular fluid from
PCOS women [70]. While normal MI/DCI ratio is nearly 100:1, in
follicular fluid of PCOS women that value account for only 0.2:1.

Myo-inositol and non-insulin-dependent effects

MI and its phosphate-derivatives play numerous pivotal and
unforeseen roles in many cellular functions. Accordingly, either
the physiologic and pharmacological function displayed by
inositol are currently investigated in deep [71].

MI participates in counteracting physical stresses, namely by
modulating osmolarity, and, somehow, it seems to stabilize the
structure of cell proteins during environmental challenges [72]; it
improves insulin-transduction pathway and takes part in several
metabolic regulatory controls [73]. MI and its phosphate deriva-
tives take part also in signaling transduction, membrane dynam-
ics, developmental processes, cytoskeleton rearrangement, just to
mention a few [74]. Conversely, an imbalance of MI levels has
been suspected to be involved in many diseases, such as cancer,
diabetes, PCOS.

Usefulness of MI supplementation in PCOS has been assessed
by several reports [75,76]. Morgante et al. have evidenced that
MI-treated insulin resistant-PCOS patients show a significant
improvement in clinical pregnancy rate (33.3% versus 13.3%)
[77]. A randomized, double-blind, placebo-controlled trial with
PCOS patients, showed that the frequency of ovulation (40%) was
significantly increased in women who received MI, versus the
control group [60]. Additional evidence has been provided by
Kamenov et al., demonstrating that MI treatment ameliorates IR
and body weight, and improves ovarian activity in PCOS patients
[78]. Moreover, it is worth noting that MI significantly slowdown
the number of FSH treatments needed to trigger ovulation [79].

Additional studies demonstrated that MI treatment lowered
lipids, insulin and androgen levels, increased insulin sensitivity,
reduced blood diastolic pressure, and was effective in treating
acne and hirsutism [80,81]. Taken as a whole, those data
evidenced that MI supplementation provides higher efficacy in
PCOS management, when compared to conventional therapies or
DCI alone. However, a potential bias is represented by the fact
that most papers suffer from the lack of a proper randomization,
and/or are flawed by a few statistical inconsistencies [82].

Yet, these studies provided the rationale for a different
formulation of inositol-based PCOS treatment, as it was recently
argued in a thoughtful opinion paper [46]. DCI alone, at low
dosage, may restore normal insulin sensitivity in classic insulin
target tissues, such as liver and muscle, which would then reduce
circulating insulin levels. Then, the enhancement in ovulatory
frequency recorded in clinical trial with DCI could be ascribed to
the overall improvement in insulin sensitivity and reduction in
circulating insulin and androgens. In contrast, higher dose of DCI
would likely impair the MI/DCI ratio, leading to a dramatic
alteration in ovary functions. As opposed, MI exert its beneficial

effects mainly at the ovary level not only by enhancing insulin
signaling transduction, but also by directly acting on a number of
ovarian functions, including steroidogenesis [80]. This aspect
deserves much further attention than previously hypothesized.
Indeed, the rationale of the inositol-based treatment of PCOS
mostly rely on the insulin-mimicking effect of inositolglycans
containing DCI or MI. Yet, these compounds have been suspected
to exert additional and even opposite effects on several pathways
downstream the insulin signaling, namely, DCI-IPG and MI-IPG
influence aromatase activity [83] and 3a-hydroxysteroid dehydro-
genase [84] in a subtle diverse fashion. In addition, a synthetic
chiro-inositol-containing glycan has been shown to mimic insu-
lin’s stimulation of thecal testosterone biosynthesis in a concen-
tration-dependent manner and to a degree at least equal to that of
insulin [64]. Furthermore, it is unlikely that physiological benefits
of inositols could only be restricted to their insulin-like activity,
given that inositols and their phosphate derivatives display a wide
range of pleiotropic effects, including among others, modulation
of the PI3K/Akt pathway, calcium release, PKA and PKCd
activity [85].

On the other hand, it is worth noting that some reports suggest
that MI may also influence cytoskeleton dynamics, while
cytoskeleton alterations have been linked to the onset of PCOS
[86]. Indeed, remodeling of cytoskeleton is a prerequisite for
ovary cells entering into the epithelial-mesenchymal transition
(EMT) and EMT is in turn required for appropriate follicle
maturation. We may speculate that MI probably modulates
microfilaments polymerization, microtubules and intermediate
filaments architecture, and by this way it could enable the
reversion of the main PCOS features, including abnormal steroid
synthesis [82]. Overall those data hint a relevant difference in the
biological effects on the ovary triggered by DCI and MI
containing IPGs, although both participate in ensuring a proper
insulin signaling. Yet, the controversial activity of DCI within the
ovary in no way can allow us to forget the positive effects
displayed by DCI on non-ovarian tissues. Thereby, a proper
treatment should integrate the positive effects exerted by both
inositol isoforms, combined according to the physiological MI/
DCI plasma ratio (40:1) [87].

A recent trial including 100 PCOS women undergoing IVF-
ET, treated with MI combined with DCI according to the 40:1
ratio has provided support to this hypothesis [88]. Significant
better results were observed in the MI-DCI (40:1) arm when
compared to the control group receiving DCI 500 mg, given that
patients treated with this combination required lower dosages of
FSH for a shorter period of time, and showed a significant
improvement in both oocyte quality and pregnancy rate.

Furthermore, the combined treatment with MI and DCI (40:1)
in PCOS patients has ameliorated parameters such as diastolic
blood pressure, fasting glucose, fasting insulin and both insulin
and glucose AUCs. A similar, positive trend has been detected for
HOMA index, triglycerides and both HDL and LDL cholesterol
levels. Moreover, the majority of patients achieved again ovula-
tion [89] (for a synthetic comparison among therapeutic treat-
ments for PCOS women, see Table 2).

Yet, further studies are warranted to conclusively determine
the exact proportion in which MI and DCI should be combined in
order to exert a maximal effect. To address such issue more
detailed inositol pharmacokinetics and pharmacodynamics inves-
tigations are needed.

Conclusions

Differences in symptoms and clinical presentation of PCOS
phenotypes claim for a tailored therapeutic approach, in order to
address both reproductive desires and medical issues. In so far as
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no conclusive agreement exists upon mechanisms responsible for
PCOS pathogenesis, current treatments should be tightly perso-
nalized. Hormonal manipulations (estro-progestins, antiandro-
gens), although effective in counteracting hyperandrogenism
effects, negatively affect reproductive outcomes and are thereby
reserved to women without immediate desire for pregnancy.

Metformin has long represented a first-line choice for PCOS
treatment in women in which restoring ovulation is mandatorily
required for becoming pregnant. However, the usefulness of
Metformin in non-insulin resistant PCOS women is broadly
debatable. Indeed, available data hints that normalizing IR at the
systemic level is not enough for restoring a proper ovulatory
function, as additionally evidenced by a study in which Metformin
administration improved PCOS symptoms only in about 50% of
patients [90]. The existing evidence indicates that intra-ovarian
androgens deregulation, likely due to the MI/DCI imbalance, may
be the main culprit for follicular arrest in PCOS [91].
Hyperandrogenism promotes follicle excess, which in turn
increases AMH intra-ovarian levels, and then could exert an
inhibiting effect on the FSH-induced aromatase activity, eventu-
ally overcoming the ‘‘maturation capacity’’ of the ovary.

A reliable clinical alternative to conventional treatment
approaches may be offered by inositol-based drugs. Both inositol
isoforms – MI and DCI – have been demonstrated to improve
insulin signaling. MI is safe and has been proved to interfere with
different targets at both ovarian and non-ovarian level. On the
contrary, DCI alone is unable to exert any valuable improvement
on ovary cell functions, as its beneficial effects are mainly limited
to non-ovarian tissue in which DCI may significantly inhibit the
hyperinsulinemic consequences.

Though MI and DCI share this property with Metformin, they
are devoid of the common side-effects associated with Metformin
therapy and could thus be considered safer than conventional
ISDs. Modulation of insulin activity, in turn, interferes with
steroidogenic pathways leading to reduced androgen synthesis at
both ovarian and adrenal level. However, high DCI concentration
is detrimental for ovary, where increased activity of epimerase
activity leads to enhanced accumulation of DCI and concomitant
depletion of MI stores. On the contrary, MI exerts several
significant functions within the ovarian tissue, including a direct
modulation activity on steroidogenesis through cytoskeleton
modification [82]. Moreover, it is worth noting that MI treatment
has shown to be effective in PCOS patients with and without IR.

To restore MI content in ovary cells without losing DCI
benefits, a proper combination of both isomers should be
envisaged. A formulation based on the physiological plasma
ratio MI:DCI (40:1) has already proven to induce higher clinical
results than MI or DCI alone. It is likely that a safe, natural
compound able to counteract both hyperinsulinemia as well as
hyperandrogenism in PCOS may significantly change the current
prevalent approach in PCOS management. The different respon-
siveness of hyperinsulinemic and non-hyperinsulinemic patients
to inositol treatment should be carefully addressed, and larger,
randomized clinical studies are warranted to confirm the
promising preliminary clinical results, till now obtained. The
possibility in gathering such information in due time must be
considered a critical step in expanding the clinician’s confidence
on this new pharmacological approach.

As final conclusion, let us enumerate just a few critical aspects
that merit an in-depth inquiry:
(a) Metabolism of inositol isomers in the ovary cells. To be

precise, it must be investigated the quantitative MI uptake
and its further processing by the integrated interplay of
inositol-kinases and phosphatase. Namely, the reported
inhibitory activity of high DCI levels on the MI uptake
deserves to be fully clarified, as that mechanism raises a

relevant concern on some current clinical practices in which
high DCI concentrations are used.

(b) MI has been shown to modulate cytoskeleton architecture. In
turn, cytoskeleton may efficiently interfere with steroidogen-
esis within the ovary. How MI actually participates in
modulating this process needs to be deciphered in detail.

(c) The dynamics of MI/DCI interconversion and the regulation
of epimerase activity require a novel investigation, possibly
carried out in a 3D-model of ovary cells.

(d) Accordingly, the cross-talk in between inositols and endo-
crine factors (FSH, LH) within ovary should be carefully
addressed.

These basic studies are thought to supply more solid founda-
tions for clinical studies in providing new insights into the
molecular mechanisms through which MI acts in fostering follicle
maturation and ovary functions.
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